Polymer solar Cells

The advantages of lower weight, flexibility, lower manufacturing costs, easier integration with other products, low environmental impact during manufacturing and operations, and quick energy payback times make organic material-based solar cells—in particular polymeric solar cells—an appealing alternative to silicon-based solar cells for capturing solar energy. The reproducibility of these efficiencies, even with the most recent efficiencies reported up to 17%, is subpar, with a large range in the efficiencies claimed across the literature. Interfaces are crucial to the functioning and functionality of these devices since they are built on ultrathin multilayer organic sheets.

With an emphasis on their physical mechanisms, this paper provides a succinct description of the main interfacial concerns that are in charge of affecting the performance of the device. The fundamentals of polymeric solar cells are introduced, and then a brief discussion of charge production and recombination at the donor-acceptor bulk heterojunction interface follows. The performance and stability of these devices are next discussed in relation to the interfacial morphology for the active layer. The creation of injection and extraction barriers is then explained along with how they affect the functionality of the device. The usage of interface dipoles is one of the most popular methods for removing these obstacles in order to increase solar cell efficiency.


    Polymer solar Cells Conference Speakers

      Recommended Sessions

      Related Journals

      Are you interested in