Cellulose for biofuels
Cellulosic ethanol is ethanol (ethyl alcohol) made from cellulose, a stringy fiber found in plants, as opposed to the seeds or fruit of the same plant. It can be made from plants like grass, wood, algae, or other types of plants. The usage of it as a biofuel is frequently considered. Cellulosic ethanol fuel has the potential to have a lower carbon footprint than fossil fuels because some of the carbon dioxide that is released while burning it is countered by the carbon dioxide that plants absorb as they develop.
Cellulosic ethanol is gaining attention due to its potential to displace ethanol produced from corn or sugarcane. The use of these plants for ethanol production could increase food prices because they are also used to make food products; cellulose-based sources, on the other hand, often do not compete with food because most plant components that are fibrous to humans are not edible. The enormous diversity and quantity of cellulose sources—grasses, trees, and algae are present in practically every ecosystem on Earth—is another possible benefit. It is conceivable to produce ethanol from even the parts of municipal solid refuse like paper. Cellulosic ethanol's high production cost, which is more complicated and time-consuming than ethanol made from corn or sugarcane, is now its biggest drawback.
Related Conference of Cellulose for biofuels
11th International Conference and Expo on Ceramics and Composite Materials
23rd International Conference and Exhibition on Materials Science and Chemistry
Cellulose for biofuels Conference Speakers
Recommended Sessions
- Biopolymers
- Cellulose for biofuels
- Chemical modifications of polymers
- Main Future Trends in Polymer Sciences
- Polymer analysis
- Polymer and materials chemistry
- Polymer Nano composites
- Polymer physics
- Polymer processing and performance
- polymer recycling and upcycling
- Polymer solar Cells
- Polymer synthesis
- Polymer Technology
- Polymer theory and simulation
- polymerization reactions
- Polymers for drug delivery, gene therapy
- Properties Polymeric material
- Self-assembly in polymeric systems
Related Journals
Are you interested in
- Additive Manufacturing and 3D Printing - Material science 2025 (UK)
- Additive Manufacturing of Ceramics and Composites - Ceramics 2025 (UK)
- Advanced Characterization Techniques - Ceramics 2025 (UK)
- Advanced Characterization Techniques for Materials - Material science 2025 (UK)
- Advances in Nanomaterials and Nanotechnology - Material science 2025 (UK)
- Bioceramics and Biomedical Applications - Ceramics 2025 (UK)
- Biomaterials and Tissue Engineering - Material science 2025 (UK)
- Carbon Nanostructures and Graphene - Materials Chemistry 2025 (France)
- Ceramic Armour and Defence Applications - Ceramics 2025 (UK)
- Ceramic Coatings and Thin Films - Ceramics 2025 (UK)
- Ceramic Matrix Composites (CMCs) - Ceramics 2025 (UK)
- Ceramic Processing Techniques - Ceramics 2025 (UK)
- Ceramic Recycling and Waste Reduction - Ceramics 2025 (UK)
- Ceramics in Materials Science - Materials Chemistry 2025 (France)
- Chemical Engineering - Materials Chemistry 2025 (France)
- Composite Material Design and Development - Ceramics 2025 (UK)
- Computational Materials Science and Modeling - Material science 2025 (UK)
- Electrical and Electronic Ceramics - Ceramics 2025 (UK)
- Emerging Functional Materials for Electronics and Photonics - Material science 2025 (UK)
- Energy and Environmental Applications - Ceramics 2025 (UK)
- Environmental Sensors Using Ceramics - Ceramics 2025 (UK)
- Fracture, Fatigue and Failure of Materials - Materials Chemistry 2025 (France)
- Functional Ceramics - Ceramics 2025 (UK)
- Glass Ceramics and Applications - Ceramics 2025 (UK)
- Green Synthesis and Processing of Materials - Material science 2025 (UK)
- High-Performance Structural Materials - Ceramics 2025 (UK)
- High-Temperature Superconductors - Ceramics 2025 (UK)
- Industrial applications of crystallization - Materials Chemistry 2025 (France)
- Lightweight Composites for Aerospace and Automotive - Ceramics 2025 (UK)
- Materials for Advanced Coatings and Surface Engineering - Material science 2025 (UK)
- Materials for Aerospace and Automotive Applications - Material science 2025 (UK)
- Materials for Biomedical Applications - Material science 2025 (UK)
- Materials for Energy and Environmental Sustainability - Material science 2025 (UK)
- Materials for Nanoelectronics and Quantum Technologies - Material science 2025 (UK)
- Materials for Optoelectronic Devices - Material science 2025 (UK)
- Materials for Renewable Energy Technologies - Material science 2025 (UK)
- Materials for Sensing and Actuation - Material science 2025 (UK)
- Materials for Structural Applications and Lightweight Design - Material science 2025 (UK)
- Materials for Sustainable Construction and Infrastructure Development - Material science 2025 (UK)
- Materials Science and Chemistry - Materials Chemistry 2025 (France)
- Mineralogy - Materials Chemistry 2025 (France)
- Nano pharmaceuticals - Materials Chemistry 2025 (France)
- Nanodentistry - Materials Chemistry 2025 (France)
- Nanostructured Ceramics - Ceramics 2025 (UK)
- Nanotechnology Applications - Materials Chemistry 2025 (France)
- Novel Materials for Energy Storage and Conversion - Material science 2025 (UK)
- Photonic and Optical Materials - Materials Chemistry 2025 (France)
- Polymer Science and Applications - Materials Chemistry 2025 (France)
- Recycling and Sustainability in Ceramics - Ceramics 2025 (UK)
- Science and Technology of Advanced Materials - Materials Chemistry 2025 (France)
- Smart Materials and Intelligent Systems - Material science 2025 (UK)
- Solid-State Chemistry and Physics - Materials Chemistry 2025 (France)
- Sustainable Materials for a Greener Future - Material science 2025 (UK)
- Tissue Engineering - Materials Chemistry 2025 (France)
- Wearable and Flexible Ceramics - Ceramics 2025 (UK)