Call for Abstract

7th Edition of International Conference on Polymer Science and Technology, will be organized around the theme “”

Euro Polymer Science 2021 is comprised of keynote and speakers sessions on latest cutting edge research designed to offer comprehensive global discussions that address current issues in Euro Polymer Science 2021

Submit your abstract to any of the mentioned tracks.

Register now for the conference by choosing an appropriate package suitable to you.


The current practices in the generation and disposal of synthetic polymers are largely unsustainable. As part of the solution, the development of biodegradable polymers, which constitute a class of “green polymers” by the green chemistry principles, has been intensively pursued in the past two decades. However, the degradation of such polymers in Earth’s landfills leads to typically no recovery of material’s values, and their degradation in the Oceans could create new or unintended environmental consequences. The industrial mechanical recycling always suffers from a significant quality loss. The proposed ideal solution is to develop chemically recyclable polymers that not only solve the end-of-life issue of polymers, but also provide a direct approach to establish circular material’s economy. Accordingly, this Critical Review article captures some selected highlights of the emerging area of recyclable “green polymers” by focusing on major progresses, technical and environmental benefits made in the development of repurposing and depolymerization processes for chemical recycling of polymers at the end their useful life.



The use of polymer in agriculture is gaining popularity in science, particularly in the field of polymer chemistry. This has provided solutions to the problems of the present day agriculture which is to maximize land and water productivity without threatening the environment and the natural resources. Superabsorbent polymer hydrogels potentially influence soil permeability, density, structure, texture, evaporation and infiltration rates of water through the soils. Functionalized polymers were used to increase the efficiency of pesticides and herbicides, allowing lower doses to be used and to indirectly protect the environment by reducing pollution and clean-up existing pollutants. This account; a detailed review study, has been put together as an expose on the myriad application of polymer in the field of agriculture, highlighting present research trend , impact on food security and future outlook.



 



A sustainable polymer is a plastic material that addresses the needs of consumers without damaging our environment, health, and economy. To do this, researchers are working to develop polymers that, when compared with their non-sustainable counterparts



 



Increasing volumes solid waste management of Polymers  of synthetic polymers area unit manufactured for varied applications. "The disposal of the used materials is turning into an key disadvantage.". not like natural polymers, most artificial macromolecules  can not be assimilated by microorganisms. though polymers represent slightly over 100 percent of total municipal waste, the matter of non-biodegradability is highlighted by overflowing landfills, contaminated marine waters, and unpleasant litter. unless acceptable means that of waste management are gettable. Total management of compound wastes wants complementary mixtures of biodegradation, burning, and exercise.. Biodegradation is that the most fascinating long-run future answer and needs intensive analysis and development before it becomes sensible. On the opposite hand, combustion and use will become operational in an exceedingly comparatively short time for the advance of the case at the present and within the close to future.



 



Polymer demand in Europe has long been recognized amongst the globe leaders. it's presently facing apparently limiting maturity among the West and thus the question is presently, of the way to feature value throughout the provision chain. Central Europe is seeing increasing investment in industrial and plastic method, with many countries cashing in on free access to the sole market to not mention an occasional production costs. Russia and thus the previous state Republics still have a lot of unsuccessful potential, deteriorated by poor republics relations and political economy. The smaller states among the region area unit experiencing a quick growth of technological capability that provides nice opportunities, however at the same time, threatens long established markets among the west the compound market is huge and various and despite increasing method, opportunities unit gift in today’s climate. whereas not prime quality info it's difficult  to rearrange future investments and promoting ways that. AMI’s latest report provides careful mathematics analysis of where growth opportunities lie and thus the nature of the trade. This report will assist any company would like to raised understand the ecu trade



AMI's 2015 European industry Report, European compound markets square measure forecast to grow by one.3% this year, building on a recovery of but I Chronicles for 2014. However, even this modest gain is underneath risk from the region's tight provide for several materials and chop-chop economic process. As a result the ecu industry in 2015 finds itself in another amount of upheaval and alter because it appearance to tug out of the stagnation caused initial by the nice Recession in 2008-2009 then by the Eurozone crisis 2012-2013. within the 2 years since AMI printed its last review, in 2013, demand has barely shifted from simply over thirty-six million tones and therefore the volume of polymers consumed in 2014 was still some 100 percent below that utilized in 2007 before the nice Recession hit.



 



Plastic utilization is that the tactic of convalescent scrap or waste plastic and reprocessing the material into useful merchandise. Since the overwhelming majority of plastic is non-biodegradable, utilisation can be a a part of world efforts to cut back plastic among the waste stream, on a mean someeight million metric heaps of waste plastic that enters the Earth's ocean once a year. Compared with profitable utilization of metal, and nearly just like the low worth of glass, plastic polymers utilization is sometimes tougher as a result of rarity and low worth. There are also varied technical hurdles to beat once utilization plastic.When differing kinds of plastics unit liquified on, they have a tendency to phase-separate, like oil and water, and set in these layers.the two most typically boughten plastics, plastic and artificial organic compound, behave this way, that limits their utility for utilization. anytime plastic is recycled, further virgin materials should be else to help improve the integrity of the material. So, even recycled plastic has new plastic material else in.the same piece of plastic can only be recycled concerning 2-3 times before its quality decreases to the aim where it'll no longer be used. Recently, the use of block copolymers as "molecular stitches" or "macromolecular attachment flux" has been projected to beat the difficulties associated with half separation throughout utilization



 



Polymers have contend Associate in Nursing integral role among the advancement of drug delivery technology by providing controlled unhitch of therapeutic agents in constant doses over long periods, cyclic quantity, and tunable unhitch of every hydrophilic and hydrophobic drugs. From early beginnings mistreatment ready-made materials, the sphere has huge massively, driven partly by the innovations of chemical engineers. modern advances in drug delivery are presently predicated upon the rational kind of polymers tailored for specific consignment and engineered to exert distinct biological functions. throughout this review, we've got a bent to spotlight the essential drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. we've got a bent to review the origins and applications of stimuli-responsive compound systems and compound medicine like polymer-protein and polymer-drug conjugates. the foremost recent developments in polymers capable of molecular recognition or leading object delivery unit of measurement surveyed perhaps areas of research advancing the frontiers of drug delivery.



 



From an artificial bone fancied from acrylic to custom confections created from chocolate, the world of 3D printing keeps getting further very good. Today, 3D printers can change people to create regarding one thing, using a variety of materials, from metal and ceramic to sugar and vinylbenzene. Of course, plastic is that the substance that first created 3D printing of any kind achievable, and plastic remains one in each of the foremost common and versatile types of materials used in 3D printing.A commenter on a recent compound Solutions journal asked for knowledge relating to the foremost common types of plastics used in 3D printing. Here’s barely bit relating to the three most-frequently used plastics that have helped spur the very good evolution of 3D printing:



 



A terpolymer fictional by polymerizing vinyl polymer and acrylonitrile with polybutadiene, ABS is another plastic ordinarily used in 3D printing. Beginners significantly favor it for its easy use in its filament kind, and since it’s durable, strong, heat-resistant, economical and versatile. , PLA is formed from renewable, organic resources like corn starch or sugarcane. It’s ordinarily accustomed produce food packaging and decayable medical devices and implants. PLA is good for 3D printing as a results of it’s simple to work with, environmentally friendly, accessible in an exceedingly} very form of colors, and will be used as either a compound or filament.



 



Of course, the vary of materials which is able to be used in 3D printing continues to expand and evolve beside the strategy and its applications. Still, one in each of the foremost very good developments in manufacturing traces its beginnings to the initial “space-age” material — plastic. that strikes America as very fitting!



 



The study of flow of matter is understood as rheology essentially in an exceedingly liquid state, however conjointly responds for  "soft solids" or solids like plastic flow instead of deforming elastically in response to applied force. it's a department of physics that deals with the deformation and flow of materials, each solids and liquids. rheology typically accounts for the behavior of non-Newtonian fluids, by distinguish the minimum variety of functions that are required to relate stresses with rate of amendment of strain or strain rates. Rheometry is experimental characterization of a material's rheological behavior .In execution, rheology is primarily involved with prolong time mechanics to characterize flow of materials, that indicates a mixture of elastic, viscous and plastic behavior by properly combining physical property and (Newtonian) mechanics. rheology has several application in polymer science and engineering, medicine, biology and physiology.



 



Plastic utilization is that the plan of action of convalescent scrap or waste plastic and reprocessing the fabric into helpful merchandise. Since the overwhelming majority of plastic is non-biodegradable, utilization will be a a section of world efforts to cut back plastic among the waste stream, on a mean some eight million metric loads of waste plastic that enters the Earth's ocean once a year. Compared with profitable utilization of metal, and nearly a bit like the low price of glass, plastic polymers utilization is usually harder as a results of rarity and low price. There also are varied technical hurdles to beat once utilization plastic. The half boundaries cause structural weakness among the subsequent material, which suggests that matter blends unit helpful in just restricted applications. the 2 most usually boughten plastics, plastic and artificial chemical compound, behave this manner, that limits their utility for utilization. anytime plastic is recycled, more virgin materials ought to be else to assist improve the integrity of the fabric. So, even recycled plastic has new plastic material else in. constant piece of plastic will solely be recycled regarding 2-3 times before its quality decreases to the aim wherever it will no longer be used. Recently, the utilization of block copolymers as "molecular stitches" or "macromolecular attachment flux" has been projected to beat the difficulties related to half separation throughout utilization



 



In  nanomaterial and nanotechnology the term ‘Nano’ is derived from the Greek ‘Nanos ‘which is known as extremely small particle. Basically nanomaterial is material with dimensions on the nano-scale. Structure at Nano-scale has unique optical, electronic, or mechanical properties. Actually, nanomaterial’s cover huge areas of materials of materials, many of which we would not normally consider to be particularly revolutionary. Because nature is full of nanomaterial’s and Nanostructure. Nanotechnology is the engineering of operative systems at the molecular scale. This covers both present work and concepts that are more advanced. In this real world today the nanotechnology has ability to build products using techniques and equipment’s to produce completely high performance products. The idea that seeded nanotechnology were first discussed in 1959 by renowned physicist Richard Feynman in his talk There's Plenty of Room at the Bottom in which it explained about the possibility of synthesis via direct manipulation of atoms