Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back


Hong Xue

Hong Kong University of Science and Technology, Hongkong

Biography

 Hong Xue has obtained her MD from the Shanghai Second Military Medical University in 1983, PhD from the Institute of Medical Sciences and Department of Biochemistry, University of Toronto in 1992, and carried out Post-doctoral studies at the Department of Genetics, University of Glasgow before joining the Department of Biochemistry, Hong Kong University of Science & Technology (HKUST). Currently, she is the Director of Applied Genomics Center of HKUST, and Professor of Life Science at Hong Kong University of Science and Technology. Her group research focuses on genomics, bioinformatics and evolution biology to decipher the mechanisms of human complex diseases, in particular, schizophrenia. The group is also interested in translational research on novel therapeutics and diagnostics for complex neuropsychiatric disorders including anxiety, depression and neurodegenerative disorders, with a focus on GABAA receptors as the drug targets. In order to effectively isolate active components from medicinal herbs, her group has recently developed a novel chromatographic method designated as Disbursed Mobile-Phase Countercurrent Chromatography (DMCC). In 2003, she and her team discovered the association between schizophrenia and a segment of the GABRB2 gene encoding the b2-subunit of GABAA receptors, the positive selection of genotypes and haplotypes in this segment, determinant role of this segment in the alternate splicing of the b2 subunit protein, and the differential modulation of the GABA-induced membrane current by the long and short forms. These discoveries represent therefore the first instance where a schizophrenia-susceptibility gene has been linked to protein processing and further to electrophysiological response of neurons, thereby opening the door toward understanding the mechanism of schizophrenia etiology leading from gene to neuronal phenotype.

Abstract

Abstract : Dispersed mobile-phase countercurrent chromatography