Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Jiri Zednik

Jiri Zednik

Charles University, Czech Republic

Title: Luminescence chemosensors based on polythiophene

Biography

Biography: Jiri Zednik

Abstract

 


This contribution reports the synthesis and post-polymerization modification of highly regioregular polymer precursor poly[3-(6-bromohexyl)thiophene] (PHT-Br), prepared by nickel- catalyzed Grignard metathesis polymerization (GRIM). Modification of PHT-Br into corresponding cationic polyelectrolytes using simple quaternization reaction with tributylamine or tributylphosphine respectively was used as the first approach for introducing functionality allowing sensing of selected metal ions. Used procedure allowed preparation of luminescent conjugated polyelectrolyte bearing simultaneously both phosphonium and ammonium pendant groups in the same polymer main-chains. Transformation of pendant bromide groups into azides ones followed by Huisgen 2+3 dipolar cycloaddition (“click” reaction) with luminophore N-(prop-1-yne-3-yl)-4-(morpholine-1-yl)-1,8-naphthalimide coded as NF was used as a second approach. Luminescence quenching has been evaluated quantitatively using Stern-Volmer methodology (using potassium ferrocyanide and ferricyanide as model pollutants). Polyelectrolyte-approach appeared promising although it is worth to mention a partial lack of selectivity. Click-based approach increased the sensor selectivity. Although free NF provided high luminescence yield (around 80%) as well as parent polythiopehene (18% luminescence quantum yield) product of “click” reaction exhibited only 4% of quantum luminescence yield. This observation represented a main drawback of “click” approach. In contrary sensing abilities of nahpthalimide-based polythiophene increased about two orders.