Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

F.Picchioni

University of Groningen, The Netherlands

Title: Product development and simulations for Enhanced Oil recovery (EOR)

Biography

Biography: F.Picchioni

Abstract

Chemical Enhanced Oil Recovery (EOR) is currently and mainly based on the use of partially hydrolyzed polyacrylamide as water-soluble polymer for mobility control. This choice is predominantly related to technological (thickening efficiency) as well as economic considerations. However, the presence of salt in the underground water significantly reduces the effect of such polymer on the solution rheology. This becomes even less when the polymer is used in combination with alkali. Therefore the amount of polymer required is significantly higher than expected on the basis of simple rheological models, which in turn has a clear negative effect on the economics of the process. Against this backdrop, the search for alternative water-soluble polymers has been gaining a predominant attention at both academic and industrial level. In this work we report on the synthesis and use of branched non-ionic polyacrylamide solutions for EOR. The polymers have been prepared by controlled radical polymerization to yield well-defined structure with variable number and length of the arms. The rheological behavior has been investigated as function of the macromolecular architecture as well as of concentration and presence of salt. The obtained results clearly indicate the validity of this approach since the thickening capability of the branched polymers is clearly improved with respect to the linear ones. Moreover, the non-ionic character of the material renders it insensitive in terms of solution viscosity to the presence of salts. Last but not least, the branched structure also confers to this material a slightly more prominent resistance to alkaline hydrolysis with respect to the linear ones.